DOS-resistant Authentication with Client Puzzles

Tuomas Aurd, Pekka Nikandér, and Jussipekka Leiwo

! Helsinki University of Technology
P.0.Box 5400, FIN-02015 HUT, Finland
{Tuonms. Aur a, Pekka. Ni kander} @ut . fi
2 Vrije Universiteit, Division of Sciences
De Boelelaan 1081A, 1081 HV Amsterdam, The Netherlands
| ei wo@s. vu. nl

Abstract. Denial of service by server resource exhaustion has becomaj@
security threat in open communications networks. Pubdigduthentication does
not completely protect against the attacks because themtithtion protocols
often leave ways for an unauthenticated client to consumenzss memory
space and computational resources by initiating a largebeurof protocol runs
and inducing the server to perform expensive cryptograpbitputations. We
show how stateless authentication protocols andctiemt puzzlesof Juels and
Brainard can be used to prevent such attacks.

1 Introduction

Denial-of-service (DOS) attacks that exhaust the servessurces are a growing con-
cern on the Internet and other open communications systesngxample, in the SYN
attack, a client floods the server with the opening messafygsedl CP protocol and
fills the space reserved in the server for storing half-opmmections.

A solution to such threats is to authenticate the client teetioe server commits any
resources to it. The authentication, however, creates p@ortunities for DOS attacks
because authentication protocols usually require thessgmstore session-specific state
data, such as nonces, and to compute expensive public-legtagms. One solution is
to begin with a weak but inexpensive authentication, angmyestronger and costlier
methods only after the less expensive ones have succeedeexample of a weak
authentication is the SYN-cookie protection against théNSittack where the return
address is verified not to be fictional by sending the clienb@ace that it must return
in its next message. This strategy is not entirely unprobkisrbecause the gradually
strengthening authentication results in longer protogonsiwith more messages and the
security of the weak authentication mechanisms may be liffic analyze.

In this paper, we advocate the design principle thatclient should always commit
its resources to the authentication protocol first and theveeshould be able to verify
the client commitment before allocating its own resourdés rule of thumb is that,
at any point before reliable authentication, the cost ofpftgocol run to the the client
should be greater than to the server. The client’s costs eaartificially increased by
asking it to compute solutions to puzzles that are easy tergémand verify but whose
difficulty for the solver can be adjusted to any level. Theseeshould remain stateless

and refuse to perform expensive cryptographic operatiatikithas verified the client’s
solution to a puzzle.

2 Redated work

Classical models of denial of service by Gligor and Yu [6, Bfhoroso [1], and Millen
[13] concentrate the specification and design of fair mustér operating systems. They
assume that all service requests are arbitrated by a trasteguting base (TCB) that
enforces the policy set by a single security officer. Thezaisido not extend well to open
distributed systems like the Internet where there is noraétrtisted administration and
no global policy or means for enforcing one, and there aretany simultaneous users
to theoretically guarantee the availability of any service

Graph-theoretical models of network reliability by Cungiram [4] and Phillips
[14] assess the vulnerability of a communications networthe destruction of nodes
and links. These models are useful in the design of netwgriltmies on the physical
layer but their applicability does not easily extend to lEghprotocol layers.

The SYN attack against the TCP connection protocol on therhet was reported
e.g. in [3]. The attack and possible remedies were analyzatktiail by Schuba et
al. [15]. Cookies have been previously used in the Photuatpol by Karn and Simp-
son [11] and in the Internet Key Exchange (IKE) by Harkins &adrel [7]. Criticism
of the latter [16] shows that the gradually strengthenintpentication is not straight-
forward to design and a careful analysis of the server resousage is needed.

Meadows [12] formalized the idea of gradually strengthgramthentication. The
design goals of a cryptographic protocol should specify hareh resources the server
may allocate at each level when its assurance of the cligiet'gity and honest purposes
step by step increases. This assurance is measured by theoes the client would
need to mount a successful attack.

The advantages of statelessness in the beginning of anndigtten protocol were
recognized by Janson & al. [9] in the KryptoKnight protocoits. Aura and Nikander
[2] generalized the cookie approach to create statelegsrsehat maintain connections
by passing the state data to the client. The paper also gkaasmes of authentication
protocols where the server avoids saving a state until thieeatication of the client
is complete. Hirose and Matsuura [8] applied these ideasD®8&-resistant version
of their KAP protocol. In addition to remaining stateleds server in their protocol
postpones expensive exponentiation operations untilstvesified that the client has
performed similar operations. This way, the server comitstesnemory and computa-
tional resources only after the client has demonstratesiritserity.

The idea of requiring the client to commit its resources fivals described early
by Dwork and Naor [5]. They suggested increasing the costeaftinic junk mailing
by asking the sender to solve a small cryptographic puzzledoh message. The cost
would be negligible for normal users but high for mass mailduels and Brainard [10]
recently presented a simpler puzzle that could be sent tocli€fts during a suspected
SYN attack. If the server thinks it is under a denial-of-ses\attack, it can ask clients
to compute the reverse of a secure one-way function by bartefbefore they are
allowed to carry on with rest of the protocol. The cost of thete force computation is

parameterized by revealing some input bits to the clientettithg it find the remaining
ones.

However, Juels and Brainard concentrate on the SYN attadkdan't consider
DOS attacks against authentication protocols. They, ity faggest that a certificate-
based client authentication solves the DOS problem anaehevould not benefit from
the puzzles. We disagree with this and use the client putalgsneralize the design
principles of the DOS-resistant KAP to any authenticatiostqcol. We also improve
the efficiency of the client puzzles by reducing the lengtthefpuzzle and its solution,
by minimizing the number of hash operations needed in thiéieation of the solution
(at the cost of slightly coarser puzzle difficulty levelg)deby observing that the puzzles
can in some networks be broadcast to the potential clients.

3 Client puzzles

The server in an authentication protocols can ask the diteslve a puzzle before the
server creates a protocol state or computes expensivadascuch as exponentiation.

C S
S does not save state data or do
. Puzzle expensive computations.

C commits its resources into

solving the puzzle. Solution _,
S verifies the solution.
S may now commit resour ces
to expensive parts of the
authentication.

Fig. 1. Server suspecting a DOS attack sends puzzles to new clients

A good puzzle should have the following properties, the tasi bf which are new
in comparison to [10]:

=

Creating a puzzle and verifying the solution is inexpem$or the server.

The cost of solving the puzzle is easy to adjust from zeimpmssible.

3. The puzzle can be solved on most types of client hardwéteo(egh it may take

longer with slow hardware).

It is not possible to precompute solutions to the puzzles.

While the client is solving the puzzle, the server doesyeed to store the solution

or other client-specific data.

6. The same puzzle may be given to several clients. Knowiagdthution of one or
more clients does not help a new client in solving the puzzle.

7. Aclient can reuse a puzzle by creating several instandés o

N

o s

The puzzle we use is the brute-force reversal of a one-waly hasction such as
MD5 or SHA. This is a practical choice because the hash fanstare computable

with a wide variety of hardware and the brute-force testifdifferent inputs is likely
to remain the most efficient way for computing the inversehefse functions. (The
difficulty of solving number-theoretic puzzles like fadtoy may depend heavily on the
sophistication of the algorithms used by client.)

To create new puzzles, the server periodically generateseaiVs and sends it to
the clients. To prevent the attacker from precomputingtemhs, the nonce needs to be
random and not predictable like, for example, time stamfibo(it 64 bits of entropy
is sufficient to prevent the attacker from creating a datalzdssolutions from which
it could frequently find a matching nonce. Birthday-styléaeks that may result in
occasional matches will not do much harm here.) The sergerdgcides the difficulty
level k of the puzzle Ng andk together form the puzzle that is sent to the client.

To solve the puzzle, the client generates a random nonreeThe purpose of this
nonce is twofold. First, if the client reuses a server noNge it creates a new puzzle
by generating a new. Second, without the client nonce an attacker could consume
a specific client’s puzzles by computing solutions and semttiem to the server be-
fore the client does. (About 24 bits of entropy is enough tevpnt an attacker from
exhausting the values @ given thatVg changes frequently.)

The client solvest (andY’, which will be discarded) from the following equation
by brute force and sends the solutidnto the server.

the k first bits of the hash
— e
h(C,Ns,N¢, X) = 000...000 Y

the rest of the hash bits

h = acryptographic hash function (e.g. MD5 or SHA)
C = the client indentity

Ng = the server's nonce

N¢ = the client’s nonce

X = the solution of the puzzle

k = the puzzle difficulty level

000...000 = thek first bits of the hash value; must be zero

Y = the rest of the hash value; may be anything

The server changes the value 8§ periodically (for example, every 60 seconds)
to limit the time clients have for precomputing solutions lang as the server accepts
solutions for a certain value df 5, it must keep book of the correctly solved instances
so that the solutions cannot be reused.

The above puzzle satisfies the criteria for good puzzles.sEneer only needs to
generate a single random nonce to create a new puzzle. Theffinlent way to solve
the puzzle is to try values ok by brute force until a solution is found. The cost of
solving the puzzle depends exponentially on the requiredbark of zero bits in the
beginning of the hash. § = 0, no work is required. I = 128 (for MD5), the client
must reverse the entire one-way hash function, which is egatipnally impossible.
Reasonable values @f lie between 0 and 64. The puzzle can be solved on a wide
range of hardware because the hash functions are one ofrtipdest cryptographic
operations.

We believe the exponential scale for puzzle difficulty isfisignt for applications.
That way, the server can verify the solution in a constanetimith a single hash. A
more accurate scale could be achieved by combining severalgs with varying size
k. This would, however, increase the cost of verification.rming puzzles of varying
size would achieve the same granularity of puzzle difficaléythe sets of equal-size
subpuzzles in [10] but at a slightly lower cost to the sejvEne parametek should
normally be set to zero and increased gradually when theeseggources are close to
being exhausted. Later, when the server again has freeibgjiiais time to decrement
k. This way, the correct value is found dynamically and we domeed to know the
exact cost of the brute-force computation for the range cdupeter values.

The solutions cannot be precomputed because the 8anigused only for a short
time. The client identityC' is used as a parameter in the puzzle so that solving the
puzzle for oneC does not help in finding solutions for anoth@r This means that it
is expensive for one client to impersonate several clieatabse the solution must be
recomputed for each client. The client may reuse the sAdiméy solving the puzzle
with a newN¢.

Finally, it is feasible to use the above puzzle in the statefghase of the protocol
because the same periodically generatgdmay be used for all clients. This makes it
also possible to broadcast the puzzle.

4 An authentication protocol

We will now look at how the client puzzles are used to imprdveDOS-resistance of an
authentication protocol. In the protocol of Fig. 2, C and $hauticate each other with
digital signatures and nonces. The protocol can easily tended into a key exchange
by including encrypted key material in the messages.

The protocol normally begins with a broadcast message frarsérver. In a non-
broadcast network, this message may be sent individuadlljgots that greet the server
with a Hello message. The server broadcast consists of @anamdnceNs and a pa-
rameterk that determines the difficulty of the puzzle. The server gates a fresh nonce
periodically and sends the same valiés k to all clients during that period. The mes-
sage may timestamped and signed to prevent an attacker fimeddasting false puz-
zles. The timestamfs and the signature can be omitted if the potential DOS attacks
againts the clients are not a concern. The client then gerssanonceéV, solves the
puzzle, and returns the signed answer to the server. Th ati@y reuse a recent puzzle
by generating a new noncég.

The server first checks that the same cli€éhhas not previously sent a correct
solution with the samé&'s, N¢. Replayed solutions are ignored. The server verifies the
client’'s solution to the puzzle by computing the hash andy after seeing that it is
correct, verifies the signature and continues with the lastigage of the authentication.
The server stores the valu€s Ng, N¢ as long as it still considers the nondg recent.

If an attacker wants to induce the server to store false gaddiehis kind or to verify
false signatures, it must compute a solution to a new punzlevery stored data item
and verified signature.

Hello
OPTIONAL
S periodically decides,

generategVs, and timestamps and
Ss(Ts,k, Ns) signs the following message.
<—
BROADCAST
C verifies the timestamps

and signatureSs.
C generatesV¢ and
solvesX by brute force from
h(C,Ns,N¢,X) =0102...0,Y.
C signs the following message.
Sc(S,C,Ns, N¢, X)
S verifies thatVs is recent,
C, Ns, N¢ not used before, and
h(C,Ns,N¢c,X) =0105...0; Y.
S may now commit resour ces.
A storesC, Ns, N¢ while Ns recent
and verifies the signaturg..
Shas now authenticated C.
S signs the following message.

Ss(S,C, N¢)

C verifies the signatur§’s.
C hasnow authenticated S.

Fig. 2. DOS-resistant authentication with public-key signatures

The puzzle increases the length of the messages only miginoale byte fork
and up to about 8 bytes for the solutionh. The nonces are needed in any case for
the authentication. Puzzles should only be used when therssuspects it is under an
attack and its capacity is becoming exhausted. Otherwisesdrver can sét= 0. This
means that there is no puzzle to solve and any valu€ &f ok.

5 Conclusion

We showed how the robustness of authentication protocalssipdenial of service at-
tacks can be improved by asking the client to commit its caiaonal resources to
the protocol run before the server allocates its memory aadgssing time. The server
sends to the client a puzzle whose solution requires a lioute-search for some bits of
the inverse of a one-way hash function. The difficulty of thezle is parameterized ac-
cording to the server load. The server stores the protoate sthd computes expensive
public-key operations only after it has verified the clisr#blution. The puzzles protects
servers that authenticate their clients against resouttaustion attacks during the first
messages of the connection opening before the client hasrbkably authenticated.
It should be noted, however, other techniques are needebtecp individual clients
against denial of service and to prevent exhaustion of comications bandwidth.

6 Acknowledgments

Tuomas Aura was funded by Helsinki Graduate School in Coanftience and Engi-
neering (HeCSE) and by Academy of Finland projects #44806/d7754.

References

1. Edward Amoroso. A policy model for denial of service Rroc. Computer Security Founda-
tions Workshop Illpages 110-114, Franconia, NH USA, June 1990. IEEE Com§Botzety
Press.

2. Tuomas Aura and Pekka Nikander. Stateless connectio®sot. International Conference
on Information and Communications Security (ICICS;90lume 1334 o£NCS pages 87—
97, Beijing, China, November 1997. Springer Verlag.

3. TCP SYN flooding and IP spoofing attack. CERT Advisory CA2a6 CERT, November
1996.

4. William H. Cunningham. Optimal attack and reinforcemehf network. Journal of the
ACM, 32(3):549-561, July 1985.

5. Cynthia Dwork and Moni Naor. Pricing via processing or catting junk mail. InAdvances
in Cryptology - Proc. CRYPTO '980olume 740 ofLNCS pages 139-147, Santa Barbara,
CA USA, August 1992. Springer-Verlag.

6. Virgil D. Gligor. A note on the denial-of-service problerin Proc. 1983 IEEE Symposium
on Research in Security and Privapages 139-149, Oakland, CA USA, April 1983. IEEE
Computer Society.

7. Dan Harkins and Dave Carrel. The Internet key exchangE)IRFC 2409, IETF Network
Working Group, November 1998.

8. Shouichi Hirose and Kanta Matsuura. Enhancing the eesist of a provably secure key
agreement protocol to a denial-of-service attackPtac. 2nd International Conference on
Information and Communication Security (ICICS'99ages 169-182, Sydney, Australia,
November 1999. Springer.

9. P.Janson, G. Tsudik, and M. Yung. Scalability and fleitibih authentication services: The
KryptoKnight approach. HEEE INFOCOM'97 Tokyo, April 1997.

10. Ari Juels and John Brainard. Client puzzles: A cryptpgia countermeasure against con-
nection depletion attacks. Froc. 1999 Network and Distributed Systems Security Sympo-
sium (NDSS)pages 151-165, San Diego, CA, February 1999. InterneeSoci

11. PhilKarn and William A. Simpson. Photuris: Session-k®nagement protocol. RFC 2522,
IETF Network Working Group, March 1999.

12. Catherine Meadows. A formal framework and evaluatiothme for network denial of ser-
vice. InProc. 12th IEEE Computer Security Foundations Worksipages 4-13, Mordano,
Italy, June 1999. IEEE Computer Society.

13. Jonathan K. Millen. A resource allocation model for ééoif service. InProc. 1992 IEEE
Computer Society Symposium on Security and Privaages 137-147, Oakland, CA USA,
May 1992. IEEE Computer Society Press.

14. Cynthia A. Phillips. The network inhibition problem. Rroc. 25th Annual ACM Symposium
on the Theory of Computingages 776—785. ACM Press, May 1993.

15. Christoph L. Schuba, Ivan V. Krsul, Markus G. Kuhn, Ewgéh Spaffold, Aurobindo Sun-
daram, and Diego Zamboni. Analysis of a denial of servicacatbn TCP. InProc. 1997
IEEE Symposium on Security and Privapgges 208-223, Oakland, CA USA, May 1997.
IEEE Computer Society Press.

16. William A. Simpson. IKE/ISAKMP considered harmfujlogin;, 24(6):48-58, December
1999.

17. Che-Fn Yu and Virgil D. Gligor. A formal specification aneérification method for the
prevention of denial of service. IRroc. 1988 IEEE Symposium on Security and Priyvacy
pages 187-202, Oakland, CA USA, April 1988. IEEE Computai&y Press.

