
DOS-resistant Authentication with Client Puzzles

Tuomas Aura1, Pekka Nikander1, and Jussipekka Leiwo21 Helsinki University of Technology
P.O.Box 5400, FIN-02015 HUT, Finland

{Tuomas.Aura,Pekka.Nikander}@hut.fi2 Vrije Universiteit, Division of Sciences
De Boelelaan 1081A, 1081 HV Amsterdam, The Netherlands

leiwo@cs.vu.nl

Abstract. Denial of service by server resource exhaustion has become amajor
security threat in open communications networks. Public-key authentication does
not completely protect against the attacks because the authentication protocols
often leave ways for an unauthenticated client to consume a server’s memory
space and computational resources by initiating a large number of protocol runs
and inducing the server to perform expensive cryptographiccomputations. We
show how stateless authentication protocols and theclient puzzlesof Juels and
Brainard can be used to prevent such attacks.

1 Introduction

Denial-of-service (DOS) attacks that exhaust the server’sresources are a growing con-
cern on the Internet and other open communications systems.For example, in the SYN
attack, a client floods the server with the opening messages of the TCP protocol and
fills the space reserved in the server for storing half-open connections.

A solution to such threats is to authenticate the client before the server commits any
resources to it. The authentication, however, creates new opportunities for DOS attacks
because authentication protocols usually require the server to store session-specific state
data, such as nonces, and to compute expensive public-key operations. One solution is
to begin with a weak but inexpensive authentication, and to apply stronger and costlier
methods only after the less expensive ones have succeeded. An example of a weak
authentication is the SYN-cookie protection against the SYN attack where the return
address is verified not to be fictional by sending the client a nonce that it must return
in its next message. This strategy is not entirely unproblematic because the gradually
strengthening authentication results in longer protocol runs with more messages and the
security of the weak authentication mechanisms may be difficult to analyze.

In this paper, we advocate the design principle thatthe client should always commit
its resources to the authentication protocol first and the server should be able to verify
the client commitment before allocating its own resources. The rule of thumb is that,
at any point before reliable authentication, the cost of theprotocol run to the the client
should be greater than to the server. The client’s costs can be artificially increased by
asking it to compute solutions to puzzles that are easy to generate and verify but whose
difficulty for the solver can be adjusted to any level. The server should remain stateless

and refuse to perform expensive cryptographic operations until it has verified the client’s
solution to a puzzle.

2 Related work

Classical models of denial of service by Gligor and Yu [6,17], Amoroso [1], and Millen
[13] concentrate the specification and design of fair multi-user operating systems. They
assume that all service requests are arbitrated by a trustedcomputing base (TCB) that
enforces the policy set by a single security officer. Their ideas do not extend well to open
distributed systems like the Internet where there is no central trusted administration and
no global policy or means for enforcing one, and there are toomany simultaneous users
to theoretically guarantee the availability of any service.

Graph-theoretical models of network reliability by Cunningham [4] and Phillips
[14] assess the vulnerability of a communications network to the destruction of nodes
and links. These models are useful in the design of network topologies on the physical
layer but their applicability does not easily extend to higher protocol layers.

The SYN attack against the TCP connection protocol on the Internet was reported
e.g. in [3]. The attack and possible remedies were analyzed in detail by Schuba et
al. [15]. Cookies have been previously used in the Photuris protocol by Karn and Simp-
son [11] and in the Internet Key Exchange (IKE) by Harkins andCarrel [7]. Criticism
of the latter [16] shows that the gradually strengthening authentication is not straight-
forward to design and a careful analysis of the server resource usage is needed.

Meadows [12] formalized the idea of gradually strengthening authentication. The
design goals of a cryptographic protocol should specify howmuch resources the server
may allocate at each level when its assurance of the client’sidentity and honest purposes
step by step increases. This assurance is measured by the resources the client would
need to mount a successful attack.

The advantages of statelessness in the beginning of an authentication protocol were
recognized by Janson & al. [9] in the KryptoKnight protocol suite. Aura and Nikander
[2] generalized the cookie approach to create stateless servers that maintain connections
by passing the state data to the client. The paper also gives examples of authentication
protocols where the server avoids saving a state until the authentication of the client
is complete. Hirose and Matsuura [8] applied these ideas to aDOS-resistant version
of their KAP protocol. In addition to remaining stateless, the server in their protocol
postpones expensive exponentiation operations until it has verified that the client has
performed similar operations. This way, the server commitsits memory and computa-
tional resources only after the client has demonstrated itssincerity.

The idea of requiring the client to commit its resources firstwas described early
by Dwork and Naor [5]. They suggested increasing the cost of electronic junk mailing
by asking the sender to solve a small cryptographic puzzle for each message. The cost
would be negligible for normal users but high for mass mailers. Juels and Brainard [10]
recently presented a simpler puzzle that could be sent to TCPclients during a suspected
SYN attack. If the server thinks it is under a denial-of-service attack, it can ask clients
to compute the reverse of a secure one-way function by brute force before they are
allowed to carry on with rest of the protocol. The cost of the brute force computation is

parameterized by revealing some input bits to the client andletting it find the remaining
ones.

However, Juels and Brainard concentrate on the SYN attack and don’t consider
DOS attacks against authentication protocols. They, in fact, suggest that a certificate-
based client authentication solves the DOS problem and, hence, would not benefit from
the puzzles. We disagree with this and use the client puzzlesto generalize the design
principles of the DOS-resistant KAP to any authentication protocol. We also improve
the efficiency of the client puzzles by reducing the length ofthe puzzle and its solution,
by minimizing the number of hash operations needed in the verification of the solution
(at the cost of slightly coarser puzzle difficulty levels), and by observing that the puzzles
can in some networks be broadcast to the potential clients.

3 Client puzzles

The server in an authentication protocols can ask the clientto solve a puzzle before the
server creates a protocol state or computes expensive functions such as exponentiation.

C S

Puzzle ������������ S does not save state data or do
expensive computations.

C commits its resources into
solving the puzzle. Solution������������!

S verifies the solution.
S may now commit resources
to expensive parts of the
authentication.

Fig. 1. Server suspecting a DOS attack sends puzzles to new clients

A good puzzle should have the following properties, the two last of which are new
in comparison to [10]:

1. Creating a puzzle and verifying the solution is inexpensive for the server.
2. The cost of solving the puzzle is easy to adjust from zero toimpossible.
3. The puzzle can be solved on most types of client hardware (although it may take

longer with slow hardware).
4. It is not possible to precompute solutions to the puzzles.
5. While the client is solving the puzzle, the server does notneed to store the solution

or other client-specific data.
6. The same puzzle may be given to several clients. Knowing the solution of one or

more clients does not help a new client in solving the puzzle.
7. A client can reuse a puzzle by creating several instances of it.

The puzzle we use is the brute-force reversal of a one-way hash function such as
MD5 or SHA. This is a practical choice because the hash functions are computable

with a wide variety of hardware and the brute-force testing of different inputs is likely
to remain the most efficient way for computing the inverse of these functions. (The
difficulty of solving number-theoretic puzzles like factoring may depend heavily on the
sophistication of the algorithms used by client.)

To create new puzzles, the server periodically generates a nonceNS and sends it to
the clients. To prevent the attacker from precomputing solutions, the nonce needs to be
random and not predictable like, for example, time stamps. (About 64 bits of entropy
is sufficient to prevent the attacker from creating a database of solutions from which
it could frequently find a matching nonce. Birthday-style attacks that may result in
occasional matches will not do much harm here.) The server also decides the difficulty
levelk of the puzzle.NS andk together form the puzzle that is sent to the client.

To solve the puzzle, the client generates a random nonceNC . The purpose of this
nonce is twofold. First, if the client reuses a server nonceNS , it creates a new puzzle
by generating a newNC . Second, without the client nonce an attacker could consume
a specific client’s puzzles by computing solutions and sending them to the server be-
fore the client does. (About 24 bits of entropy is enough to prevent an attacker from
exhausting the values ofNC given thatNS changes frequently.)

The client solvesX (andY , which will be discarded) from the following equation
by brute force and sends the solutionX to the server.h(C;NS ; NC ; X) = thek first bits of the hashz }| {000 : : :000 Y|{z}

the rest of the hash bitsh = a cryptographic hash function (e.g. MD5 or SHA)C = the client indentityNS = the server’s nonceNC = the client’s nonceX = the solution of the puzzlek = the puzzle difficulty level000 : : : 000 = thek first bits of the hash value; must be zeroY = the rest of the hash value; may be anything

The server changes the value ofNS periodically (for example, every 60 seconds)
to limit the time clients have for precomputing solutions. As long as the server accepts
solutions for a certain value ofNS , it must keep book of the correctly solved instances
so that the solutions cannot be reused.

The above puzzle satisfies the criteria for good puzzles. Theserver only needs to
generate a single random nonce to create a new puzzle. The only efficient way to solve
the puzzle is to try values ofX by brute force until a solution is found. The cost of
solving the puzzle depends exponentially on the required numberk of zero bits in the
beginning of the hash. Ifk = 0, no work is required. Ifk = 128 (for MD5), the client
must reverse the entire one-way hash function, which is computationally impossible.
Reasonable values ofk lie between 0 and 64. The puzzle can be solved on a wide
range of hardware because the hash functions are one of the simplest cryptographic
operations.

We believe the exponential scale for puzzle difficulty is sufficient for applications.
That way, the server can verify the solution in a constant time with a single hash. A
more accurate scale could be achieved by combining several puzzles with varying sizek. This would, however, increase the cost of verification. (Combining puzzles of varying
size would achieve the same granularity of puzzle difficultyas the sets of equal-size
subpuzzles in [10] but at a slightly lower cost to the server.) The parameterk should
normally be set to zero and increased gradually when the server resources are close to
being exhausted. Later, when the server again has free capacity, it is time to decrementk. This way, the correct value is found dynamically and we do not need to know the
exact cost of the brute-force computation for the range of parameter values.

The solutions cannot be precomputed because the sameNS is used only for a short
time. The client identityC is used as a parameter in the puzzle so that solving the
puzzle for oneC does not help in finding solutions for anotherC. This means that it
is expensive for one client to impersonate several clients because the solution must be
recomputed for each client. The client may reuse the sameNS by solving the puzzle
with a newNC .

Finally, it is feasible to use the above puzzle in the stateless phase of the protocol
because the same periodically generatedNS may be used for all clients. This makes it
also possible to broadcast the puzzle.

4 An authentication protocol

We will now look at how the client puzzles are used to improve the DOS-resistance of an
authentication protocol. In the protocol of Fig. 2, C and S authenticate each other with
digital signatures and nonces. The protocol can easily be extended into a key exchange
by including encrypted key material in the messages.

The protocol normally begins with a broadcast message from the server. In a non-
broadcast network, this message may be sent individually toclients that greet the server
with a Hello message. The server broadcast consists of a random nonceNS and a pa-
rameterk that determines the difficulty of the puzzle. The server generates a fresh nonce
periodically and sends the same valuesNS ; k to all clients during that period. The mes-
sage may timestamped and signed to prevent an attacker from broadcasting false puz-
zles. The timestampTS and the signature can be omitted if the potential DOS attacks
againts the clients are not a concern. The client then generates a nonceNC , solves the
puzzle, and returns the signed answer to the server. The client may reuse a recent puzzle
by generating a new nonceNC .

The server first checks that the same clientC has not previously sent a correct
solution with the sameNS; NC . Replayed solutions are ignored. The server verifies the
client’s solution to the puzzle by computing the hash and, only after seeing that it is
correct, verifies the signature and continues with the last message of the authentication.
The server stores the valuesC;NS ; NC as long as it still considers the nonceNS recent.
If an attacker wants to induce the server to store false values of this kind or to verify
false signatures, it must compute a solution to a new puzzle for every stored data item
and verified signature.

C S
Hello������������!

OPTIONALSS(TS; k;NS) ������������
BROADCAST

S periodically decidesk,
generatesNS , and timestamps and
signs the following message.

C verifies the timestampTS
and signatureSS .
C generatesNC and
solvesX by brute force fromh(C;NS ; NC ; X) = 0102 : : : 0kY .
C signs the following message. SC(S;C;NS ; NC ; X)������������!

SS(S;C;NC) ������������
S verifies thatNS is recent,C;NS ; NC not used before, andh(C;NS ; NC ; X) = 0102 : : : 0k Y .
S may now commit resources.
A storesC;NS ; NC whileNS recent
and verifies the signatureSC .
S has now authenticated C.
S signs the following message.

C verifies the signatureSS.
C has now authenticated S.

Fig. 2. DOS-resistant authentication with public-key signatures

The puzzle increases the length of the messages only minimally: one byte fork
and up to about 8 bytes for the solutionX . The nonces are needed in any case for
the authentication. Puzzles should only be used when the server suspects it is under an
attack and its capacity is becoming exhausted. Otherwise, the server can setk = 0. This
means that there is no puzzle to solve and any value ofX is ok.

5 Conclusion

We showed how the robustness of authentication protocols against denial of service at-
tacks can be improved by asking the client to commit its computational resources to
the protocol run before the server allocates its memory and processing time. The server
sends to the client a puzzle whose solution requires a brute-force search for some bits of
the inverse of a one-way hash function. The difficulty of the puzzle is parameterized ac-
cording to the server load. The server stores the protocol state and computes expensive
public-key operations only after it has verified the client’s solution. The puzzles protects
servers that authenticate their clients against resource exhaustion attacks during the first
messages of the connection opening before the client has been reliably authenticated.
It should be noted, however, other techniques are needed to protect individual clients
against denial of service and to prevent exhaustion of communications bandwidth.

6 Acknowledgments

Tuomas Aura was funded by Helsinki Graduate School in Computer Science and Engi-
neering (HeCSE) and by Academy of Finland projects #44806 and #47754.

References

1. Edward Amoroso. A policy model for denial of service. InProc. Computer Security Founda-
tions Workshop III, pages 110–114, Franconia, NH USA, June 1990. IEEE ComputerSociety
Press.

2. Tuomas Aura and Pekka Nikander. Stateless connections. In Proc. International Conference
on Information and Communications Security (ICICS’97), volume 1334 ofLNCS, pages 87–
97, Beijing, China, November 1997. Springer Verlag.

3. TCP SYN flooding and IP spoofing attack. CERT Advisory CA-96.21, CERT, November
1996.

4. William H. Cunningham. Optimal attack and reinforcementof a network. Journal of the
ACM, 32(3):549–561, July 1985.

5. Cynthia Dwork and Moni Naor. Pricing via processing or combatting junk mail. InAdvances
in Cryptology - Proc. CRYPTO ’98, volume 740 ofLNCS, pages 139–147, Santa Barbara,
CA USA, August 1992. Springer-Verlag.

6. Virgil D. Gligor. A note on the denial-of-service problem. In Proc. 1983 IEEE Symposium
on Research in Security and Privacy, pages 139–149, Oakland, CA USA, April 1983. IEEE
Computer Society.

7. Dan Harkins and Dave Carrel. The Internet key exchange (IKE). RFC 2409, IETF Network
Working Group, November 1998.

8. Shouichi Hirose and Kanta Matsuura. Enhancing the resistance of a provably secure key
agreement protocol to a denial-of-service attack. InProc. 2nd International Conference on
Information and Communication Security (ICICS’99), pages 169–182, Sydney, Australia,
November 1999. Springer.

9. P. Janson, G. Tsudik, and M. Yung. Scalability and flexibility in authentication services: The
KryptoKnight approach. InIEEE INFOCOM’97, Tokyo, April 1997.

10. Ari Juels and John Brainard. Client puzzles: A cryptographic countermeasure against con-
nection depletion attacks. InProc. 1999 Network and Distributed Systems Security Sympo-
sium (NDSS), pages 151–165, San Diego, CA, February 1999. Internet Society.

11. Phil Karn and William A. Simpson. Photuris: Session-keymanagement protocol. RFC 2522,
IETF Network Working Group, March 1999.

12. Catherine Meadows. A formal framework and evaluation method for network denial of ser-
vice. InProc. 12th IEEE Computer Security Foundations Workshop, pages 4–13, Mordano,
Italy, June 1999. IEEE Computer Society.

13. Jonathan K. Millen. A resource allocation model for denial of service. InProc. 1992 IEEE
Computer Society Symposium on Security and Privacy, pages 137–147, Oakland, CA USA,
May 1992. IEEE Computer Society Press.

14. Cynthia A. Phillips. The network inhibition problem. InProc. 25th Annual ACM Symposium
on the Theory of Computing, pages 776–785. ACM Press, May 1993.

15. Christoph L. Schuba, Ivan V. Krsul, Markus G. Kuhn, Eugene H. Spaffold, Aurobindo Sun-
daram, and Diego Zamboni. Analysis of a denial of service attack on TCP. InProc. 1997
IEEE Symposium on Security and Privacy, pages 208–223, Oakland, CA USA, May 1997.
IEEE Computer Society Press.

16. William A. Simpson. IKE/ISAKMP considered harmful.;login;, 24(6):48–58, December
1999.

17. Che-Fn Yu and Virgil D. Gligor. A formal specification andverification method for the
prevention of denial of service. InProc. 1988 IEEE Symposium on Security and Privacy,
pages 187–202, Oakland, CA USA, April 1988. IEEE Computer Society Press.

