STRICT MEMORY HARD HASHING FUNCTIONS
(PRELIMINARY V0.3, 01-19-14)

SERGIO DEMIAN LERNER

ABSTRACT. We introduce the concept of strict memory hard functions. Strict
memory hard functions are an extension of memory hard functions such that
a slight reduction in the memory available for computation, compared to a
predefined optimal memory size, makes the function evaluation exponentially
slower or infeasible. The main application of strict memory hard functions is
to prove a certain amount of memory is used during a certain time interval or
in a certain computation. This in turn can be used to attest that areas of mem-
ory of devices do not contain hidden data. Other applications are password
hashing and proof of work. We present SeqMemoHash and RandMemoHash,
two sequential memory hard functions under the random oracle model.

1. INTRODUCTION

Cryptographic hash functions are easy to evaluate but practically difficult to in-
vert and while preserving much of the source entropy. Cryptographic hash functions
serve as building blocks for other useful functions, such as key derivation functions
(KDF). A key derivation function derives one or more secret keys from a secret
value such as a master key using a pseudo-random function. Password-based KDFs
(PKDF) (also known as password hashing functions) use a password or pass-phrase
as the master key. PKDFs are often used for key stretching. Key stretching is used
to achieve a more secure password authentication with a website. The website does
not store the original password, but a hashed keys, using the PKDF. If an attacker
gets access to the list of derived key for all the website users, he may try to perform
a dictionary attack or a brute-force attack. This requires evaluating the PKDF for
each password candidate and comparing the result to the hashed values. To reduce
the usefulness of these attacks, key stretching functions are designed so that they
require either a costly computation or a high use of RAM. A costly computation
can be achieved by xor-ing the digests of recursively hashing a password and a
salt, such as in the PBKDF2 scheme (the xor operation ensures that entropy is
minimally reduced). The scrypt algorithm [1] is an example of a key stretching
algorithm that can be configured to require the use of certain amount of RAM in
order to be computed efficiently and each memory access depends on the previous
one. This makes hardware implementations of a cracking machine less attractive
since this memory access pattern cannot be paralellized nor pipelined. Nevertheless
the scrypt function can still be computed fast even if the memory available during
computation is less than the optimal value. Password hashing functions do not need
to prevent the function to be computed with less memory: the desired property is
that computing the function with less than optimal memory makes a evaluation
slow enough so that there is no economic benefit in creating a cracking machine

Key words and phrases. scrypt kdf.
1

Preliminary version — January 19, 2014

2 SERGIO DEMIAN LERNER

with such properties. In scrypt, computing time increases linearly with the amount
of memory removed from the optimum, until some very small constant minimum
memory is left, where it turns infeasible (e.g. exponential). If more memory is
taken away, the computation turns impossible. In comparison, in strict memory
hard functions (SMHF) if more than a constant small amount of memory is removed
from the optimum, the computation becomes immediately infeasible or even im-
possible. We present SeqMemoHash and RandMemoHash, two strict memory hard
functions under the random oracle model. These functions can be used as password
hashing functions, but they may not be the achieve the highest throughput, since
they require a hashing function to support the strict property, while scrypt only
needs a uniform strongly-ordered function (a function whose output differs with
high probability if the operations are evaluated in a different order). Nevertheless,
it’s possible to modify our schemes by reducing the number of rounds of the hash-
ing function to achieve higher throughput (e.g.) without affecting the practical
security as long as inverting the compression function is expensive compared to add
the additional memory required for optimal performance. For example SHA-256
reduced to 16 rounds is 4 times faster than Salsa20/8.

2. APPLICATION TO SOFTWARE ATTESTATION

Suppose a verifier wishes to attest the software on a target computer and already
has an attestation method which verifies that the running or installed software is the
same as a predefined base (e.g. by means of hashing). But the attestation process
must also verify that nothing is hiding in the free memory, either in volatile or non-
volatile storage. The trivial but far from optimal solution is that the verifier sends a
truly random number sequence to fill the unused memory, then performs the known
software attestation phase, and finally checks for the presence of the same sequence
in memory (possible by requesting a hash digest prefixed by a challenge). SMHF
can provide the same functionality without the network transmission of the random
values, which may constitute a prohibitively high overhead. A verifier provides a
seed to the attested computer and then the computer computes a pseudo-random
number sequence that fills unused memory using a multiple rounds of a SMHF.
This filling process should take a measurable time higher than the communication
latency (e.g. 1 second). Then the target computer sends back a hash digest of
the last SMHF round, which is verified by the verifier. After the known software
attestation phase is concluded, the verifier sends a challenge to the target computer.
The computer must reply with a the hash of the challenge concatenated with the
output of the last round of the SMHF (that should be stored in memory). If memory
is not filled with this data, and the target computer attempts to recompute the
SMHF, it will be detected by the verifier because of a high delay in the expected
response.

3. STRICT MEMORY-HARD FUNCTIONS

Def. 1: An algorithm for Random Access Machine is RAM-fast for a memory
size n if it uses T'(n) operations, where T'(n) = O(n).

Def. 2: A function is RAM-fast if it can be computed by a RAM-fast algo-
rithm for a Random Access Machine.

Def. 3: A memory-hard algorithm on a Random Access Machine is an algo-
rithm which uses n space and T'(n) operations, where n = Q(T(n)*~¢)..

Preliminary version — January 19, 2014

Def. 3: A function is strict-memory-hard if:
e is RAM-fast and can be feasibly computed by a memory-hard algo-
rithm on a Random Access Machine in n space and
e It cannot be feasibly computed on a Parallel Random Access Machine
with any number of processors and n’ space, if n’ < n — x for a fixed
value z > 0 for any sufficiently large parameter n.

4. SEQMEMOHASH

SeqMemoHash is our first SMHF proposal. Let H be a one-way compression
function. Let D be a hash digest size. Let s be the master-secret whose size equals
D. Let M[i] for 0 < i < N be the memory array, where the memory cell holds D
bytes. Let R be the number of rounds of the function. The algorithm computes
the function in-place, the output is the memory array M. For PoW or password
hashing, the last z blocks of memory (M[N — z]..M[N — 1]) are taken and hashed
again with a secure cryptographic hashing function to obtain the final result.

SeqMemoHash(s, R, N)
(1) Set M[0] :=s
(2) Fori:=1to N —1doset M[i]:= H(M[i —1])
(3) For r:=1to R do
(a) Forb:=0to N —1do
(i) M[b] :==H(M[(b—1+ N) mod N] || M[b])

If we set R > N +1, then SeqMemoHash is strict memory hard. Now we attempt
an informal proof. Let ¢ be working state space of the compression function. If
the available memory is lower than N % D + ¢ then computing the last round
requires storing a temporary state of size D and evaluating the previous round
at least twice. The second time the evaluation would have to be performed with
N % D + ¢ — D space. The same argument can be applied to the round before
the last, but with the reduced memory. After N rounds, the compression function
would need to be evaluated without enough temporary space for the working state,
and the computation becomes infeasible. Also, for N > 128, R = 128 is enough
for 128-bit equivalent infeasibility, since the number of times the first round will be
evaluated will be higher than 2!28. A more careful analysis shows that the number
of backtracking calls each round performs increases with the backtracking depth
because each round requires the storage of a temporary hash digest and reduces
the caller round temporary storage space. This problem is similar to a register
allocation problem, and the exact recurrence that gives the number of hashes that
need to be computed for the optimal solution could not be found by the author.

5. RANDMEMOHASH, ADDING UNPREDICTABLE MEMORY ACCESSES

The inputs of each hashing step of SeqMemoHash are known in advance, so
it is possible to use an optimal register allocation algorithm to reuse as many
intermediate results as possible. In fact, a greedy algorithm that always removes
the oldest block in the chain seems optimal. In this section we propose a slight
modification of our previous function that prevents any register allocation algorithm
to know in advance which registers (or memory blocks, in our context) will be
needed in the future. We force that the index of one of the blocks to hash depend
on the last hash of the chain. This gives a highly uniform random distribution

Preliminary version — January 19, 2014

4 SERGIO DEMIAN LERNER

of the indexes. It is still possible that when a recomputation is required, and a
backtrack is executed, the current block index is previously stored and passed to
the backtracking subroutine as argument, so it can dynamically optimize the state
of memory after the backtracking function returns. Nevertheless, the underling
problem seems to be NP-complete, so it’s possible that only a suboptimal solution
is found for a sufficiently large N. Our simulations show that if less than the optimal
memory is provided, the number of hashing steps performed by a greedy algorithm
grows with the factorial of the number of rounds. If we are able to prove this is
true for any algorithm, then it would mean that if R > 35 the computation turns
infeasible for 128-bit equivalent security.

We define RandMemoHash as follows:

RandMemoHash(s, R, N)

(1) Set M[0] :=s

(2) Fori:=1to N —1doset M[i]:= H(M[i —1])
(3) For r:=1to R do

(a) For b:=0to N —1 do
(i) p:=(b—14+N)mod N

(ii) g :=AsInteger(M[p]) mod (N — 1)
(iii) j:= (b+¢) mod N
(iv) M{p] :=H(MIp] || MI])

Note that if inputs are taken at random order instead of sequentially, it reduces
the utility of CPU caches, which is generally an advantage.

To use RandMemoHash as a password hashing function, the function H can be
replaced by a reduced round version (e.g. SHA-256 with 16 rounds) if the final
result is fully hashed. Also the seed should be obtained by a standard fast key
derivation function from the password and the result M should be passed through
another key derivation function to output a shorter keys.

6. PERFORMANCE OPTIMIZATIONS

When RandMemoHash is used for proof of work, it can prevent the use of GPUs
or ASICs for spamming or obtaining a speedup over standard computers. By re-
quiring 1 MB of memory, computing SeqMemoHash on a start-of-the-art GPUs
(as of 2013) becomes slower than using a standard computer. The inner hashing
function can be reduced in rounds, as long as finding a pre-image for the reduced
round function is harder than computing RandMemoHash at full.

A suggested configuration for the use of RandMemoHash as PoW is this:

¢ RandMemoHash is used with 4 rounds (R=4)

e The inner hash function is SHA-256 reduced to 16 rounds

e N =26 502 MB of memory are required to optimally evaluate SeqMem-
oHash.

e Computing SeqMemoHash requires at least reduced hash function eval-
uations, which is equivalent to 216 full SHA-256 evaluations, which takes
approximately 30 msec in a standard computer.

e Assuming each SHA-256 round requires 4 steps, the total number of steps
performed for a RandMemoHash evaluation is 224.

218

Preliminary version — January 19, 2014

For this configuration, computing RandMemoHash with half of the memory is
conjectured to require the recomputation of approximately 260 hash digests.

Also for use in PoW there is no need to hide the initial seed, not any intermediate
state. Full SeqMemoHash pre-image attacks are prevented by hashing the final
block with full SHA-256. An attacker will not be willing to break an internal
reduced hash function for every nonce, even if it may be computationally feasible.
For example, if we assume that breaking pre-image resistance of SHA-2 reduced
to 16 rounds requires only 232 steps (breaking the pre-image resistance of SHA-
256 reduced to 24 rounds requires 2240 steps [3]). Then the cost of computing
RandMemoHash with 32 bytes less memory than the optimal size (an hash digest
less) requires at least performing these 232 additional steps, so RandMemoHash will
require 256 times more than before.

7. GRADUAL VERIFICATION

When SeqMemoHash or RandMemoHash are used as PoW, an attacker may try
a DoS attack by cheating on the difficulty of the PoW, and forcing the verifier to
invest CPU resources in computing the (invalid) MemoHash digest. One way of
protecting from this attack is by creating a PoW that consist of the concatenation
of all intermediate results produced at steps that are power of two (e.g. at hashing
steps 1,2,4,8, ..), and the final result. For the configuration given in the previous
section, this requires 17 intermediate hash digests and the final hash digest (total-
ing 576 bytes). The verifier must check each intermediate state against the given
values during the computation. This protection assures that the attacker must have
performed at least half of the operations performed by the verifier.

8. CONCLUSION

We introduce the concept of strict memory hard functions (SMHF) and present
SeqMemoHash and RandMemoHash, two SMHF candidates that we conjecture that
are strict memory hard under the random oracle model.

9. REFERENCES

(1] Colin Percival, STRONGER KEY DERIVATION VIA SEQUENTIAL MEMORY-
HARD FUNCTIONS

[2] Takanori Isobe and Kyoji Shibutani. Preimage attacks on reduced Tiger and
SHA-2. In Fast Software Encryption 4AS FSE 2009, LNCS. Springer, 2009. to
appear

E-mail address: sergiolerner@certimix.com

Preliminary version — January 19, 2014

