
PayWord and MicroMint:
Two simple micropayment schemes

Ronald L. Rivest∗ and Adi Shamir∗∗

April 27, 2001

∗MIT Laboratory for Computer Science
545 Technology Square, Cambridge, Mass. 02139

∗∗Weizmann Institute of Science
Applied Mathematics Department

Rehovot, Israel

{rivest,shamir}@theory.lcs.mit.edu

1 Introduction

We present two simple micropayment schemes, “PayWord” and “MicroMint,” for making
small purchases over the Internet. We were inspired to work on this problem by DEC’s
“Millicent” scheme[10]. Surveys of some electronic payment schemes can be found in Hallam-
Baker [6], Schneier[16], and Wayner[18].

Our main goal is to minimize the number of public-key operations required per payment,
using hash operations instead whenever possible. As a rough guide, hash functions are about
100 times faster than RSA signature verification, and about 10,000 times faster than RSA
signature generation: on a typical workstation, one can sign two messages per second, verify
200 signatures per second, and compute 20,000 hash function values per second.

To support micropayments, exceptional efficiency is required, otherwise the cost of the
mechanism will exceed the value of the payments. As a consequence, our micropayment
schemes are light-weight compared to full macropayment schemes. We “don’t sweat the
small stuff”: a user who loses a micropayment is similar to someone who loses a nickel in
a candy machine. Similarly, candy machines aren’t built with expensive mechanisms for
detecting forged coins, and yet they work well in practice, and the overall level of abuse is
low. Large-scale and/or persistent fraud must be detected and eliminated, but if the scheme
delivers a volume of payments to the right parties that is roughly correct, we’re happy.

In our schemes the players are brokers, users, and vendors. Brokers authorize users
to make micropayments to vendors, and redeem the payments collected by the vendors.
While user-vendor relationships are transient, broker-user and broker-vendor relationships
are long-term. In a typical transaction a vendor sells access to a World-Wide Web page for
one cent. Since a user may access only a few pages before moving on, standard credit-card
arrangements incur unacceptably high overheads.

The first scheme, “PayWord,” is a credit-based scheme, based on chains of “paywords”
(hash values). Similar chains have been previously proposed for different purposes: by Lam-
port [9] and Haller (in S/Key) for access control [7], and by Winternitz [11] as a one-time
signature scheme. The application of this idea for micropayments has also been indepen-
dently discovered by Anderson et al. [2] and by Pederson [14], as we learned after distributing
the initial draft of this paper. We discuss these related proposals further in Section 5. The
user authenticates a complete chain to the vendor with a single public-key signature, and
then successively reveals each payword in the chain to the vendor to make micropayments.
The incremental cost of a payment is thus one hash function computation per party. Pay-
Word is optimized for sequences of micropayments, but is secure and flexible enough to
support larger variable-value payments as well.

The second scheme, “MicroMint,” was designed to eliminate public-key operations alto-
gether. It has lower security but higher speed. It introduces a new paradigm of representing
coins by k-way hash-function collisions. Just as for a real mint, a broker’s “economy of
scale” allows him to produce large quantities of such coins at very low cost per coin, while
small-scale forgery attempts can only produce coins at a cost exceeding their value.

1

2 Generalities and Notation

We use public-key cryptography (e.g. RSA with a short public exponent). The public keys
of the broker B, user U , and vendor V are denoted PKB, PKU , and PKV , respectively;
their secret keys are denoted SKB, SKU , and SKV . A message M with its digital signature
produced by secret key SK is denoted {M}SK . This signature can be verified using the
corresponding public key PK.

We let h denote a cryptographically strong hash function, such as MD5[15] or SHA[13].
The output (nominally 128 or 160 bits) may be truncated to shorter lengths as described
later. The important property of h is its one-wayness and collision-resistance; a very large
search should be required to find a single input producing a given output, or to find two
inputs producing the same output. The input length may, in some cases, be equal to the
output length.

3 PayWord

PayWord is credit-based. The user establishes an account with a broker, who issues her
a digitally-signed PayWord Certificate containing the broker’s name, the user’s name and
IP-address, the user’s public key, the expiration date, and other information. The certificate
has to be renewed by the broker (e.g. monthly), who will do so if the user’s account is in
good standing. This certificate authorizes the user to make Payword chains, and assures
vendors that the user’s paywords are redeemable by the broker. We assume in this paper
that each payword is worth exactly one cent (this could be varied).

In our typical application, when U clicks on a link to a vendor V ’s non-free web page,
his browser determines whether this is the first request to V that day. For a first request,
U computes and signs a “commitment” to a new user-specific and vendor-specific chain of
paywords w1, w2, . . . , wn. The user creates the payword chain in reverse order by picking
the last payword wn at random, and then computing

wi = h(wi+1)

for i = n− 1, n− 2, . . . , 0. Here w0 is the root of the payword chain, and is not a payword
itself. The commitment contains the root w0, but not any payword wi for i > 0. Then U
provides this commitment and her certificate to V , who verifies their signatures.

The i-th payment (for i = 1, 2, . . .) from U to V consists of the pair (wi, i), which the
vendor can verify using wi−1. Each such payment requires no calculations by U , and only a
single hash operation by V .

At the end of each day, V reports to B the last (highest-indexed) payment (wl, l) received
from each user that day, together with each corresponding commitment. B charges U ’s
account l cents and pays l cents into V ’s account. (The broker might also charge subscription
and/or transaction fees, which we ignore here.)

A fundamental design goal of PayWord is to minimize communication (particularly on-
line communication) with the broker. We imagine that there will be only a few nationwide

2

brokers; to prevent them from becoming a bottleneck, it is important that their computa-
tional burden be both reasonable and “off-line.” PayWord is an “off-line” scheme: V does
not need to interact with B when U first contacts V , nor does V need to interact with B
as each payment is made. Note that B does not even receive every payword spent, but only
the last payword spent by each user each day at each vendor.

PayWord is thus extremely efficient when a user makes repeated requests from the same
vendor, but is quite effective in any case. The public-key operations required by V are only
signature verifications, which are relatively efficient. We note that Shamir’s probabilistic
signature screening techniques[17] can be used here to reduce the computational load on the
vendor even further. Another application where PayWord is well-suited is the purchase of
pay-per-view movies; the user can pay a few cents for each minute of viewing time.

This completes our overview; we now give some technical details.

3.1 User-Broker relationship and certificates

User U begins a relationship with broker B by requesting an account and a PayWord Cer-
tificate. She gives B over a secure authenticated channel: her credit-card number, her public
key PKU , and her “delivery address” AU . Her aggregated PayWord charges will be charged
to her credit-card account. Her delivery address is her Internet/email or her U.S. mail ad-
dress; her certificate will only authorize payments by U for purchases to be delivered to
AU .

The user’s certificate has an expiration date E. Certificates might expire monthly, for
example. Users who don’t pay their bills won’t be issued new certificates.

The broker may also give other (possibly user-specific) information IU in the certificate,
such as: a certificate serial number, credit limits to be applied per vendor, information on
how to contact the broker, broker/vendor terms and conditions, etc.

The user’s certificate CU thus has the form:

CU = {B,U,AU , PKU , E, IU}SKB .

The PayWord certificate is a statement by B to any vendor that B will redeem authentic
paywords produced by U turned in before the given expiration date (plus a day’s grace).

PayWord is not intended to provide user anonymity. Although certificates could contain
user account numbers instead of user names, the inclusion of AU effectively destroys U ’s
anonymity. However, some privacy is provided, since there is no record kept as to which
documents were purchased.

If U loses her secret key she should report it at once to B. Her liability should be limited
in such cases, as it is for credit-card loss. However, if she does so repeatedly the broker may
refuse her further service. The broker may also keep a “hot list” of certificates whose users
have reported lost keys, or which are otherwise problematic.

As an alternative to hot-lists, one can use hash-chains in a different manner as proposed
by Micali [12] to provide daily authentication of the user’s certificate. The user’s certificate
would additionally contain the root w′0 of a hash chain of length 31. On day j − 1 of the
month, the broker will send the user (e.g. via email) the value w′j if and only if the user’s

3

account is still in good standing. Vendors will then demand of each user the appropriate w′

value before accepting payment.

3.2 User-Vendor relationships and payments

User-vendor relationships are transient. A user may visit a web site, purchase ten pages,
and then move on elsewhere.

Commitments

When U is about to contact a new vendor V , she computes a fresh payword chain w1,
. . . , wn with root w0. Here n is chosen at the user’s convenience; it could be ten or ten
thousand. She then computes her commitment for that chain:

M = {V,CU , w0, D, IM}SKU .

Here V identifies the vendor, CU is U ’s certificate, w0 is the root of the payword chain, D
is the current date, and IM is any additional information that may be desired (such as the
length n of the payword chain). M is signed by U and given to V . (Since this signature
is necessarily “on-line,” as it contains the vendor’s name, the user might consider using an
“on-line/off-line” signature scheme[5].)

This commitment authorizes B to pay V for any of the paywords w1, . . . , wn that V
redeems with B before date D (plus a day’s grace). Note that paywords are vendor-specific
and user-specific; they are of no value to another vendor.

Note that U must sign a commitment for each vendor she pays. If she rapidly switches
between vendors, the cost of doing so may become noticeable. However, this is PayWord’s
only significant computational requirement, and the security it provides makes PayWord
usable even for larger “macropayments” (e.g. software selling at $19.99).

The vendor verifies U ’s signature on M and the broker’s signature on CU (contained
within M), and checks expiration dates.

The vendor V should cache verified commitments until they expire at the end of the day.
Otherwise, if he redeemed (and forgot) paywords received before the expiration date of the
commitment, U could cheat V by replaying earlier commitments and paywords. (Actually,
to defeat this attack, V need store only a short hash of each commitment he has reported
to B already today.)

The user should preferably also cache her commitment until she believes that she is
finished ordering information from V , or until the commitment expires. She can always
generate a fresh commitment if she re-visits a vendor whose commitment she has deleted.

Payments

The user and vendor need to agree on the amount to be paid. In our exemplary applica-
tion, the price of a web page is typically one cent, but could be some other amount. A web
page should presumably be free if the user has already purchased it that day, and is just
requesting it again because it was flushed from his cache of pages.

A payment P from U to V consists of a payword and its index:

P = (wi, i) .

4

The payment is short: only twenty or thirty bytes long. (The first payment to V that
day would normally accompany U ’s corresponding commitment; later payments are just the
payword and its index, unless the previous chain is exhausted and a new chain must be
committed to.) The payment is not signed by U , since it is self-authenticating (using the
commitment).

The user spends her paywords in order: w1 first, then w2, and so on. If each payword
is worth one cent, and each web page costs one cent, then she discloses wi to V when she
orders her i-th web page from V that day.

This leads to the PayWord payment policy: for each commitment a vendor V is paid l
cents, where (wl, l) is the corresponding payment received with the largest index. This means
that V needs to store only one payment from each user: the one with the highest index.
Once a user spends wi, she can not spend wj for j < i. The broker can confirm the value to
be paid for wl by determining how many applications of h are required to map wl into w0.

PayWord supports variable-size payments in a simple and natural manner. If U skips
paywords, and gives w7 after giving w2, she is giving V a nickel instead of a penny. When
U skips paywords, during verification V need only apply h a number of times proportional
to the value of the payment made.

A payment does not specify what item it is payment for. The vendor may cheat U by
sending him nothing, or the wrong item, in return. The user bears the risk of losing the
payment, just as if he had put a penny in the mail. Vendors who so cheat their customers
will be shunned. This risk can be moved to V , if V specifies payment after the document
has been delivered. If U doesn’t pay, V can notify B and/or refuse U further service. For
micropayments, users and vendors might find either approach workable.

3.3 Vendor-Broker relationships and redemption

A vendor V needn’t have a prior relationship with B, but does need to obtain PKB in an
authenticated manner, so he can authenticate certificates signed by B. He also needs to
establish a way for B to pay V for paywords redeemed. (Brokers pay vendors by means
outside the PayWord system.)

At the end of each day (or other suitable period), V sends B a redemption message
giving, for each of B’s users who have paid V that day (1) the commitment CU received
from U , (2) the last payment P = (wl, l) received from U .

The broker then needs to (1) verify each commitment received (he only needs to verify
user signatures, since he can recognize his own certificates), including checking of dates, etc.,
and (2) verify each payment (wl, l) (this requires l hash function applications). We assume
that B normally honors all valid redemption requests.

Since hash function computations are cheap, and signature verifications are only mod-
erately expensive, B’s computational burden should be reasonable, particularly since it is
more-or-less proportional to the payment volume he is supporting; B can charge transaction
or subscription fees adequate to cover his computation costs. We also note that B never
needs to respond in real-time; he can batch up his computations and perform them off-line
overnight.

5

3.4 Efficiency

We summarize PayWord’s computational and storage requirements:

• The broker needs to sign each user certificate, verify each user commitment, and per-
form one hash function application per payment. (All these computations are off-line.)
The broker stores copies of user certificates and maintains accounts for users and ven-
dors.

• The user needs to verify his certificates, sign each of his commitments, and perform one
hash function application per payword committed to. (Only signing commitments is an
on-line computation.) He needs to store his secret key SKU , his active commitments,
the corresponding payword chains, and his current position in each chain.

• The vendor verifies all certificates and commitments received, and performs one hash
function application per payword received or skipped over. (All his computations are
on-line.) The vendor needs to store all commitments and the last payment received
per commitment each day.

3.5 Variations and Extensions

In one variation, h(·) is replaced by hs(·) = h(s, ·), where s is a “salt” (random value)
specified in the commitment. Salting may enable the use of faster hash functions or hash
functions with a shorter output length (perhaps as short as 64–80 bits).

The value of each payword might be fixed at one cent, or might be specified in CU or M .
In a variation, M might authenticate several chains, whose paywords have different values
(for penny paywords, nickel paywords, etc.).

The user name may also need to be specified in a payment if it is not clear from context.
If U has more than one payword chain authorized for V , then the payment should specify
which is relevant.

Paywords could be sold on a debit basis, rather than a credit basis, but only if the user
interacts with the broker to produce each commitment: the certificate could require that the
broker, rather than the user, sign each commitment. The broker can automatically refund
the user for unused paywords, once the vendor has redeemed the paywords given to him.

In some cases, for macropayments, it might be useful to have the “commitment” act like
an electronic credit card order or check without paywords being used at all. The commitment
would specify the vendor and the amount to be paid.

The broker may specify in user certificates other terms and conditions to limit his risk.
For example, B may limit the amount that U can spend per day at any vendor. Or, B may
refuse payment if U ’s name is on B’s “hot list” at the beginning of the day. (Vendors can
down-load B’s hot-list each morning.) Or, B may refuse to pay if U ’s total expenditures
over all vendors exceeds a specified limit per day. This protects B from extensive liability if
SKU is stolen and abused. (Although again, since CU only authorizes delivery to AU , risk
is reduced.) In these cases vendors share the risk with B.

6

Instead of using payword chains, another method we considered for improving efficiency
was to have V probabilistically select payments for redemption. We couldn’t make this idea
work out, and leave this approach as an open problem.

4 MicroMint

MicroMint is designed to provide reasonable security at very low cost, and is optimized for
unrelated low-value payments. MicroMint uses no public-key operations at all.

MicroMint “coins” are produced by a broker, who sells them to users. Users give these
coins to vendors as payments. Vendors return coins to the broker in return for payment by
other means.

A coin is a bit-string whose validity can be easily checked by anyone, but which is hard
to produce. This is similar to the requirements for a public-key signature, whose complexity
makes it an overkill for a transaction whose value is one cent. (PayWord uses signatures,
but not on every transaction.)

MicroMint has the property that generating many coins is very much cheaper, per coin
generated, than generating few coins. A large initial investment is required to generate the
first coin, but then generating additional coins can be made progressively cheaper. This is
similar to the economics for a regular mint, which invests in a lot of expensive machinery
to make coins economically. (It makes no sense for a forger to produce coins in a way that
costs more per coin produced than its value.)

The broker will typically issue new coins at the beginning of each month; the validity of
these coins will expire at the end of the month. Unused coins are returned to the broker at
the end of each month, and new coins can be purchased at the beginning of each month.
Vendors can return the coins they collect to the broker at their convenience (e.g. at the end
of each day).

We now describe the “basic” variant of MicroMint. Many extensions and variations are
possible on this theme; we describe some of them in section 4.2.

Hash Function Collisions

MicroMint coins are represented by hash function collisions, for some specified one-way
hash function h mapping m-bit strings x to n-bit strings y. We say that x is a pre-image
of y if h(x) = y. A pair of distinct m-bit strings (x1, x2) is called a (2-way) collision if
h(x1) = h(x2) = y, for some n-bit string y.

If h acts “randomly,” the only way to produce even one acceptable 2-way collision is to
hash about

√
2n = 2n/2 x-values and search for repeated outputs. This is essentially the

“birthday paradox.” (We ignore small constants in our analyses.)

Hashing c times as many x-values as are needed to produce the first collision results in
approximately c2 as many collisions, for 1 ≤ c ≤ 2n/2, so producing collisions can be done
increasingly efficiently, per coin generated, once the threshold for finding collisions has been
passed.

Coins as k-way collisions

A problem with 2-way collisions is that choosing a value of n small enough to make the

7

broker’s work feasible results in a situation where coins can be forged a bit too easily by an
adversary. To raise the threshold further against would-be forgers, we propose using k-way
collisions instead of 2-way collisions.

A k-way collision is a set of k distinct x-values x1, x2, . . . , xk that have the same hash
value y. The number of x-values that must be examined before one expects to see the first
k-way collision is then approximately 2n(k−1)/k. If one examines c times this many x-values,
for 1 ≤ c ≤ 2n/k, one expects to see about ck k-way collisions. Choosing k > 2 has the dual
effect of delaying the threshold where the first collision is seen, and also accelerating the rate
of collision generation, once the threshold is passed.

We thus let a k-way collision (x1, . . . , xk) represent a coin. The validity of this coin can
be easily verified by anyone by checking that the xi’s are distinct and that

h(x1) = h(x2) = · · · = h(xk) = y

for some n-string y.

Minting coins

The process of computing h(x) = y is analogous to tossing a ball (x) at random into
one of 2n bins; the bin that ball x ends up in is the one with index y. A coin is thus a
set of k balls that have been tossed into the same bin. Getting k balls into the same bin
requires tossing a substantial number of balls altogether, since balls can not be “aimed” at
a particular bin. To mint coins, the broker will create 2n bins, toss approximately k2n balls,
and create one coin from each bin that now contains at least k balls. With this choice of
parameters each ball has a chance of roughly 1/2 of being part of a coin.

Whenever one of the 2n bins has k or more balls in it, k of those balls can be extracted
to form a coin. Note that if a bin has more than k balls in it, the broker can in principle
extract k-subsets in multiple ways to produce several coins. However, an adversary who
obtains two different coins from the same bin could combine them to produce multiple new
coins. Therefore, we recommend that a MicroMint broker should produce at most one coin
from each bin. Following this rule also simplifies the Broker’s task of detecting multiply-
spent coins, since he needs to allocate a table of only 2n bits to indicate whether a coin with
a particular n-bit hash value has already been redeemed.

A small problem in this basic picture, however, is that computation is much cheaper than
storage. The number of balls that can be tossed into bins in a month-long computation far
exceeds both the number of balls that can be memorized on a reasonable number of hard
disks and the number of coins that the broker might realistically need to mint. One could
attempt to balance the computation and memory requirements by utilizing a very slow hash
algorithm, such as DES iterated many times. Unfortunately, this approach also slows down
the verification process.

A better approach, which we adopt, is to make most balls unusable for the purpose of
minting coins. To do so, we say that a ball is “good” if the high-order bits of the hash value
y have a value z specified by the broker. More precisely, let n = t + u for some specified
nonnegative integers t and u. If the high-order t bits of y are equal to the specified value
z then the value y is called “good, ” and the low-order u bits of y determine the index of
the bin into which the (good) ball x is tossed. (General x values are referred to merely as

8

“balls,” and those that are not good can be thought of as having been conceptually tossed
into nonexistent virtual bins that are “out of range.”)

A proper choice of t enables us to balance the computational and storage requirements
of the broker, without slowing down the verification process. It slows down the generation
process by a factor of 2t, while limiting the storage requirements of the broker to a small
multiple of the number of coins to be generated. The broker thus tosses approximately k2n

balls, memorizes about k2u good balls that he tosses into the 2u bins, and generates from
them approximately (1/2) · 2u valid coins.

Remark: We note that with standard hash functions, such as MD5 and DES, the number
of ouput bits produced may exceed the number n of bits specified in the broker’s parameters.
A suitable hash function for the broker can be obtained by discarding all but the low-order
n bits of the standard hash function output. This discarding of bits other than the low-order
n bits is a different process than that of specifying a particular value for the high-order t
bits out of the n that was described above.

A detailed scenario

Here is a detailed sketch of how a typical broker might proceed to choose parameters
for his minting operating for a given month. The calculations are approximate (values are
typically rounded to the nearest power of two), but instructive; they can be easily modified
for other assumptions.

The broker will invest in substantial hardware that gives him a computational advantage
over would-be forgers, and run this hardware continuously for a month to compute coins
valid for the next month. This hardware is likely to include many special-purpose chips for
computing h efficiently.

We suppose that the broker wishes to have a net profit of $1 million per month (approx-
imately 227 cents/month). He charges a brokerage fee of 10%. That is, for every coin worth
one cent that he sells, he only gives the vendor 0.9 cents when it is redeemed. Thus, the
broker needs to sell one billion coins per month (approximately 230 coins/month) to collect
his $1M fee. If an average user buys 2500 ($25.00) coins per month, he will need to have a
customer base of 500,000 customers.

The broker chooses k = 4; a coin will be a good 4-way collision.

To create 230 coins, the broker chooses u = 31, so that he creates an array of 231 (ap-
proximately two billion) bins, each of which can hold up to 4 x-values that hash to an n-bit
value that is the concantenation of a fixed t-bit pattern z and the u-bit index of the bin.

The broker will toss an average of 4 balls into each bin. That is, the broker will generate
4 · 231 = 233 (approximately eight billion) x-values that produce good y-values. When he
does so, the probability that a bin then contains 4 or more x-values (and thus can yield a
coin) is about 1/2. (Using a Poisson approximation, it can be calculated that the correct
value is approximately 0.56.) Since each of the 231 bins produces a coin with probability
1/2, the number of coins produced is 230, as desired.

In order to maximize his advantage over an adversary who wishes to forge coins, the
broker invests in special-purpose hardware that allows him to compute hash values very
quickly. This will allow him to choose a relatively large value of t, so that good hash values
are relatively rare. This increases the work factor for an adversary (and for the broker) by a

9

factor of 2t. The broker chooses his hash function h as the low-order n bits of the encryption
of some fixed value v0 with key x under the Data Encryption Standard (DES):

h(x) = [DESx(v0)]1...n .

The broker purchases a number of field-programmable gate array (FPGA) chips, each
of which is capable of hashing approximately 225 (approximately 30 million) x-values per
second. (See [3].) Each such chip costs about $200; we estimate that the broker’s actual
cost per chip might be closer to $400 per chip when engineering, support, and associated
hardware are also considered. The broker purchases 28 (= 256) of these chips, which costs
him about $100,000. These chips can collectively hash 233 (approximately 8.6 billion) values
per second. Since there are roughly 221 (two million) seconds in a month, they can hash
about 254 (approximately 18 million billion) values per month.

Based on these estimates the broker chooses n = 52 and t = 21 and runs his minting
operation for one month. Of the k2n = 254 hash values computed, only one in 221 will be
good, so that approximately 233 good x-values are found, as necessary to produce 230 coins.

Storing a good (x, h(x)) pair takes less than 16 bytes. The total storage required for
all good pairs is less than 237 bytes (128 Gigabytes). Using standard magnetic hard disk
technology costing approximately $300 per Gigabyte, the total cost for storage is less than
$40,000. The total cost for the broker’s hardware is thus less than $150,000, which is less
than 15% of the first month’s profit.

Rather than actually writing each pair into a randomly-accessible bin, the broker can
write the 233 good pairs sequentially to the disk array, and then sort them into increasing or-
der by y value, to determine which are in the same bin. With a reasonable sorting algorithm,
the sorting time should be under one day.

Selling coins

Towards the end of each month, the broker begins selling coins to users for the next
month. At the beginning of each month, B reveals the new validity criterion for coins to be
used that month. Such sales can either be on a debit basis or a credit basis, since B will be
able to recognize coins when they are returned to him for redemption. In a typical purchase,
a user might buy $25.00 worth of coins (2500 coins), and charge the purchase to his credit
card. The broker keeps a record of which coins each user bought. Unused coins are returned
to the broker at the end of each month.

Making payments

Each time a user purchases a web page, he gives the vendor a previously unspent coin
(x1, x2, . . . , xk). (This might be handled automatically by the user’s web browser when the
user clicks on a link that has a declared fee.) The vendor verifies that it is indeed a good
k-way collision by computing h(xi) for 1 ≤ i ≤ k, and checking that the values are equal
and good. Note that while the broker’s minting process was intentionally slowed down by a
factor of 2t, the vendor’s task of verifying a coin remains extremely efficient, requiring only
k hash computations and a few comparisons (in our proposed scenario, k = 4).

Redemptions

The vendor returns the coins he has collected to the broker at the end of each day. The
broker checks each coin to see if it has been previously returned, and if not, pays the vendor

10

one cent (minus his brokerage fee) for each coin. We propose that if the broker receives a
specific coin more than once, he does not pay more than once. Which vendor gets paid can
be decided arbitrarily or randomly by the broker. This may penalize vendors, but eliminates
any financial motivation a vendor might have had to cheat by redistributing coins he has
collected to other vendors.

4.1 Security Properties

We distinguish between small-scale attacks and large-scale attacks. We believe that users
and vendors will have little motivation to cheat in order to gain only a few cents; even if they
do, the consequences are of no great concern. This is similar to the way ordinary change is
handled: many people don’t even bother to count their change following a purchase. Our
security mechanisms are thus primarily designed to discourage large-scale attacks, such as
massive forgery or persistent double-spending.

Forgery

Small-scale forgery is too expensive to be of interest to an adversary: with the recom-
mended choice of k = 4, n = 54, and u = 31, the generation of the first forged coin requires
about 245 hash operations. Since a standard work-station can perform only 214 hash opera-
tions per second, a typical user will need 231 seconds (about 80 years) to generate just one
forged coin on his workstation.

Large-scale forgery can be detected and countered as follows:

• All forged coins automatically become invalid at the end of the month.

• Forged coins can not be generated until after the broker announces the new monthly
coin validity criterion at the beginning of the month.

• The use of hidden predicates (described below) gives a finer time resolution for rejecting
forged coins without affecting the validity of legal coins already in circulation.

• The broker can detect the presence of a forger by noting when he receives coins corre-
spondings to bins that he did not produce coins from. This works well in our scenario
since only about half of the bins produce coins. To implement this the broker need
only work with a bit-array having one bit per bin.

• The broker can at any time declare the current period to be over, recall all coins for
the current period, and issue new coins using a new validation procedure.

• The broker can simultaneously generate coins for several future months in a longer
computation, as described below; this makes it harder for a forger to catch up with
the broker.

Theft of coins

If theft of coins is judged to be a problem during initial distribution to users or during
redemption by vendors, it is easy to transmit coins in encrypted form during these operations.

11

User/broker and vendor/broker relationships are relatively stable, and long-term encryption
keys can be arranged between them.

To protect coins as they are being transferred over the Internet from user to vendor, one
can of course use public-key techniques to provide secure communication. However, in keep-
ing with our desire to minimize or eliminate public-key operations, we propose below another
mechanism, which makes coins user-specific. This does not require public-key cryptography,
and makes it harder to re-use stolen coins.

Another concern is that two vendors may collude so that both attempt to redeem the
same coins. The recommended solution is that a broker redeem a coin at most once, as
discussed earlier. Since this may penalize honest vendors who receive stolen coins, we can
make coins vendor-specific as well as user-specific, as described below.

Double-spending

Since the MicroMint scheme is not anonymous, the broker can detect a doubly-spent coin,
and can identify which vendors he received the two instances from. He also knows which
user the coin was issued to. With the vendors’ honest cooperation, he can also identify
which users spent each instance of that coin. Based on all this information, the broker can
keep track of how many doubly-spent coins are asssociated with each user and vendor. A
large-scale cheater (either user or vendor) can be identified by the large number of duplicate
coins associated with his purchases or redemptions; the broker can then drop a large-scale
cheater from the system. A small-scale cheater may be hard to identify, but, due to the low
value of individual coins, it is not so important if he escapes identification.

MicroMint does not provide any mechanism for preventing purely malicious framing (with
no financial benefit to the framer). We believe that the known mechanisms for protecting
against such behavior are too cumbersome for a light-weight micropayment scheme. Since
MicroMint does not use real digital signatures, it may be hard to legally prove who is guilty
of duplicating coins. Thus, a broker will not be able to pursue a cheater in court, but can
always drop a suspected cheater from the system.

4.2 Variations

User-specific coins

We describe two proposals for making coins that are user-specific in a way that can be
easily checked by vendors. Such coins, if stolen, are of no value to most other users. This
greatly reduces the motivation for theft of coins.

In the first proposal, the broker splits the users into “groups,” and gives each user coins
whose validity depends on the identity of the group. For example, the broker can give user
U coins that satisfy the additional condition h′(x1, x2, . . . , xk) = h′(U), where hash function
h′ produces short (e.g. 16-bit) output values that indicate U ’s group. A vendor can easily
check this condition, and reject a coin that is not tendered by a member of the correct group.

The problem with this approach is that if the groups are too large, then a thief can easily
find users of the appropriate group who might be willing to buy stolen coins. On the other
hand, if the groups are too small (e.g. by placing each user is in his own group), the broker
may be forced to precompute a large excess of coins, just to ensure that he has a large enough

12

supply to satisfy each user’s unpredictable needs.

In the second proposal, we generalize the notion of a “collision” to more complicated
combinatorial structures. Formally, a coin (x1, . . . , xk) will be valid for a user U if the
images y1 = h(x1), y2 = h(x2), . . . , yk = h(xk) satisfy the condition

yi+1 − yi = di (mod 2u)

for i = 1, 2, . . . , k − 1, where
(d1, d2, . . . , dk−1) = h′(U)

for a suitable auxiliary hash function h′. (The original proposal for representing coins as
collisions can be viewed as the special case where all the distances di’s between the k bins
are zero.)

To mint coins of this form, the broker fills up most of his bins by randomly tossing balls
into them, except that now it is not necessary to have more than one ball per bin. We
emphasize that this pre-computation is not user-specific, and the broker does not need to
have any prior knowledge of the number of coins that will be requested by each user, since
each good ball can be used in a coin for any user. After this lengthy pre-computation, the
broker can quickly create a coin for any user U by

• Computing (d1, . . . , dk−1) = h′(U).

• Picking a random bin index y1. (This bin should have been previously unused as a y1

for another coin, so that y1 can be used as the “identity” of the coin when the broker
uses a bit-array to determine which coins have already been redeemed.)

• Computing yi+1 = yi + di (mod 2u) for i = 1, 2, . . . , k − 1,

• Taking a ball x1 out of bin y1, and taking a copy of one ball out of each bin y2, . . . ,
yk. (If any bin yi is empty, start over with a new y1.) Note that balls may be re-used
in this scheme.

• Producing the ordered k-tuple (x1, . . . , xk) as the output coin.

A convenient feature of this scheme is that it is easy to produce a large number of coins
for a given user even when the broker’s storage device is a magnetic disk with a relatively
slow seek time. The idea is based on the observation that if the y1 values for successive
coins are consecutive, then so also will be the yi values for each i, 1 < i ≤ k. Therefore,
a request for 2500 new coins with k = 4 requires only four disk seeks, rather than 10, 000
seeks: at 10 milliseconds per seek, this reduces the total seek time from 100 seconds to only
40 milliseconds.

Note that in principle coins produced for different users could re-use the same ball xi.
Conceivably, someone could forge a new coin by combining pieces of other coins he has seen.
However, he is unlikely to achieve much success by this route unless he sees balls from a
significant fraction of all the bins. For example, suppose that there are 231 bins, of which
the forger has seen a fraction 2−10 (i.e., he has collected 221 balls from coins spent by other
users). Then the expected number of coins he can piece together from these balls that satisfy

13

the condition of being a good coin for himself is only 231(2−10)3 = 2. (Even if he had 1000
customers for these coins, he would expect to make only 2000 coins total, or two coins per
customer on the average.) Thus, we are not too concerned about this sort of “cut-and-paste”
forgery.

Vendor-specific coins

To further reduce the likelihood that coins will be stolen, the user can give coins to vendors
in such a way that each coin can be redeemed only by a small fraction of the vendors. This
technique makes a stolen coin less desirable, since it is unlikely to be accepted by a vendor
other than the one where it was originally spent. The additional check of validity can be
carried out both by the vendor and by the broker. (Having vendor-specific coins is also a
major feature of the Millicent [10] scheme.)

The obvious difficulty is that neither the broker nor the user can predict ahead of time
which vendors the user will patronize, and it is unreasonable to force the user to purchase
in advance coins specific for each possible vendor. Millicent adopts the alternative strategy
whereby the user must contact the broker in real-time whenever the user needs coins for
a new vendor. (He also needs to contact the broker to return excess unused coins that
are specific to that vendor.) We can overcome these problems with an extension of the
user-specific scheme described above, in which the user purchases a block of “successive”
MicroMint coins.

Intuitively, the idea is the following. Choose a value v (e.g. 1024) less than u. Let a u-bit
bin-index y be divided into a u− v-bit upper part y′ and a v-bit lower part y′′. We consider
that y′ specifies a “superbin” index and that y′′ specifies a bin within that superbin. A user
now purchases balls in bulk and makes his own coins. He purchases balls by the superbin,
obtaining 2v balls per superbin with one ball in each bin of the superbin. He buy k superbins
of balls for 2v cents. A coin from user U is valid for redemption by vendor V if:

y′i+1 = y′i + d′i (mod 2u−v) for i = 1, . . . , k− 1,

and
y′′i+1 = y′′i + d′′i (mod 2v) for i = 1, . . . , k− 1,

where
h′(U) = (d′1, . . . , d

′
k−1)

and
h′′(V) = (d′′1, . . . , d

′′
k−1) .

The broker chooses the next available superbin as the first superbin to give the user; the
other superbins are then uniquely determined by the differences {d′i} defined by the user’s
identity and the choice of the first superbin. Analogously, to make a coin for a particular
vendor the user chooses a ball from the next bin from his first superbin, and must use balls
from bins in the other superbins that are then uniquely determined by the differences {d′′i }
defined by the vendor’s identity and the choice of the first bin. Note that balls from the
first superbin are used only once, to permit detection of double-spending, whereas balls from
the other superbins may appear more than once (in coins paid to different vendors), or not
at all. It may be difficult for a broker to create superbins that are perfectly full even if he

14

throws more balls. He might sell superbins that are almost full, but then a user may have
difficulty producing some coins for some vendors. To compensate, the broker can reduce the
price by one cent for each empty bin sold.

Simultaneously generating balls for multiple months

Our major line of defense against large-scale forgery is the fact that the broker can
compute coins in advance, whereas a forgery attempt can only be started once the new
validity condition for the current month is announced. We now describe a technique whereby
computing the balls for a single month’s coins takes eight months, but the broker doesn’t
fall behind because he can generate balls for eight future months concurrently. The forger
will thus have the dual problems of starting late and being too slow, even if he uses the same
computational resources as the real broker.

In this method, the broker changes the monthly validity criterion, not by changing the
hash function h, but by announcing each month a new value z such that ball x is good when
the high-order t bits of h(x) are equal to z. The broker randomly and secretly chooses in
advance the values z that will be used for each of the next eight months. Tossing a ball still
means performing one hash function computation, but the tossed ball is potentially “good”
for any of the next eight months, and it is trivial for the broker to determine if this is the case.
In contrast, the forger only knows the current value of z, and can not afford to memorize all
the balls he tosses, since memory is relatively expensive and only a tiny fraction (e.g., 2−21

in our running example) of the balls are considered “good” at any given month.

We now describe a convenient way of carrying out this calculation. Assume that at the
beginning of the month j, the broker has all of the balls needed for month j, 7/8 of the balls
needed for month j + 1, 6/8 of the balls needed for month j + 2, ..., and 1/8 of the balls
needed in for month j + 7. During month j, the broker tosses balls by randomly picking
x values, calculating y = h(x), and checking whether the top-most t bits of y are equal to
any of the z values to be used in months j + 1, . . . , j + 8. To slow the rate at which he
generates good balls for each upcoming month, he increases n and t each by three. After the
month-long computation, we expect him to have all the coins he needs for month j + 1, 7/8
of the coins he needs for month j+ 2, and so on; this is the desired “steady-state” situation.
The broker needs four times as much storage to hold the balls generated for future months,
but balls for future months can be temporarily stored on inexpensive magnetic tapes because
he doesn’t need to respond quickly to user requests for those coins yet.

Hidden Predicates

The “hidden predicate” technique for defeating forgers works as follows. We choose
m > n, and require each m-bit pre-image to satisfy a number of hidden predicates. The
hidden predicates should be such that generating pre-images satisfying the predicates is easy
(if you know the predicate). To generate an xi, one can pick its last n bits randomly, and
define the j-th bit of xi, for j = m−n, . . . , 1, to be the j-th hidden predicate applied to bits
j+1, . . . ,m of xi. The hidden predicates must be balanced and difficult to learn from random
examples. Suggestions of hard-to-learn predicates exist in the learning-theory literature.
For example the parity/majority functions of Blum et al.[4] (which are the exclusive-or of
some of the input bits together with the majority function on a disjoint set of input bits)
are interesting, although slightly more complicated functions may be appropriate in this
application when word lengths are short. With m− n = 32, the broker can have one hidden

15

predicate for each day of the month. He could reveal a new predicate each day, and ask
vendors to check that the coins they receive satisfy these predicates (otherwise the coins will
not be accepted by the broker). This would not affect the validity of legitimate coins already
in circulation, but makes forgery extremely difficult, since the would-be forger would have
to discard much of his precomputation work as each new predicate is revealed. We feel that
such techniques are strongly advisable in MicroMint.

Other Extensions

Peter Wayner (private communication) has suggested a variation on MicroMint in which
coins of different values are distinguished by publicly-known predicates on the x-values.

5 Relationship to Other Micropayment Schemes

In this section we compare our proposals to the Millicent[10], NetBill [1], NetCard [2], and
Pederson [14] micropayment schemes.

NetBill offers a number of advanced features (such as electronic purchase orders and
encryption of purchased information), but it is relative expensive: digital signatures are
heavily used and the NetBill server is involved in each payment.

Millicent uses hash functions extensively, but the broker must be on-line whenever the
user wishes to interact with a new vendor. The user buys vendor-specific scrip from the
broker. For applications such as web browsing, where new user-vendor relationships are
continually being created, Millicent can place a heavy real-time burden on the broker. Com-
pared to Millicent, both PayWord and MicroMint enable the user to generate vendor-specific
“scrip” without any interaction with the broker, and without the overhead required in re-
turning unused vendor-specific scrip. Also, PayWord is a credit rather than debit scheme.

Anderson, Manifavas, and Sutherland [2] have developed a micropayment system, “Net-
Card,” which is very similar to PayWord in that it uses chains of hash values with a digitally
signed root. (The way hash chains are created differs in a minor way.) However, in their
proposal, it is the bank rather than the user who prepares the chain and signs the root,
which adds to the overall burden of the bank. This approach prevents the user from creating
new chains, although a NetCard user could spend a single chain many times. Compared to
PayWord, NetCard is debit-based, rather than credit-based. We have heard that a patent
has been applied for on the NetCard system.

Torben Pedersen outlines a micropayment proposal[14] that is also based on hash chains.
His motivating application was for incremental payment of telephone charges. His paper
does not provide much detail on many points (e.g. whether the system is credit or debit-
based, how to handle exceptions, whether chains are vendor-specific, and other auxiliary
security-related matters). The CAFE project has filed for a patent on what we believe is an
elaboration of Pedersen’s idea. (The details off the CAFE scheme are not available to us.)

Similarly following Pedersen’s exposition, the iKP developers Hauser, Steiner, and Waid-
ner have independently adopted a similar approach [8].

16

6 Conclusions and Discussion

We have presented two new micropayment schemes which are exceptionally economical in
terms of the number of public-key operations employed. Furthermore, both schemes are
off-line from the broker’s point of view.

References

[1] The NetBill Electronic Commerce Project, 1995.
http://www.ini.cmu/NETBILL/home.html.

[2] Ross Anderson, Harry Manifavas, and Chris Sutherland. A practical electronic cash
system, 1995. Available from author: Ross.Anderson@cl.cam.ac.uk.

[3] Matt Blaze, Whitfield Diffie, Ronald L. Rivest, Bruce Schneier, Tsutomu Shimomura,
Eric Thompson, and Michael Wiener. Minimal key lengths for symmetric ciphers to
provide adequate commercial security: A report by an ad hoc group of cryptographers
and computer scientists, January 1996. Available at http://www.bsa.org.

[4] Avrim Blum, Merrick Furst, Michael Kearns, and Richard J. Lipton. Cryptographic
primitives based on hard learning problems. In Douglas R. Stinson, editor, Proc.
CRYPTO 93, pages 278–291. Springer, 1994. Lecture Notes in Computer Science No.
773.

[5] Shimon Even, Oded Goldreich, and Silvio Micali. On-line/off-line digital signatures. In
G. Brassard, editor, Proc. CRYPTO 89, pages 263–277. Springer-Verlag, 1990. Lecture
Notes in Computer Science No. 435.

[6] Phillip Hallam-Baker. W3C payments resources, 1995.
http://www.w3.org/hypertext/WWW/Payments/overview.html.

[7] Neil M. Haller. The S/KEY one-time password system. In ISOC, 1994.

[8] Ralf Hauser, Michael Steiner, and Michael Waidner. Micro-Payments based on iKP,
December 17, 1995. Available from authors. sti@zurich.ibm.com.

[9] Leslie Lamport. Password authentication with insecure communication. Communica-
tions of the ACM, 24(11):770–771, November 1981.

[10] Mark S. Manasse. Millicent (electronic microcommerce), 1995.
http://www.research.digital.com/SRC/personal/Mark Manasse/uncommon/ucom.html.

[11] Ralph C. Merkle. A certified digital signature. In G. Brassard, editor, Proc. CRYPTO
89, pages 218–238. Springer-Verlag, 1990. Lecture Notes in Computer Science No. 435.

[12] Silvio Micali. Efficient certificate revocation. Technical Report TM-542b, MIT Labora-
tory for Computer Science, March 22, 1996.

17

[13] National Institute of Standards and Technology (NIST). FIPS Publication 180: Secure
Hash Standard (SHS), May 11, 1993.

[14] Torben P. Pedersen. Electronic payments of small amounts. Technical Report DAIMI
PB-495, Aarhus University, Computer Science Department, Århus, Denmark, August
1995.

[15] Ronald L. Rivest. The MD5 message-digest algorithm. Internet Request for Comments,
April 1992. RFC 1321.

[16] Bruce Schneier. Applied Cryptography (Second Edition). John Wiley & Sons, 1996.

[17] Adi Shamir. Fast signature screening. CRYPTO ’95 rump session talk; to appear in
RSA Laboratories’ CryptoBytes.

[18] Peter Wayner. Digital Cash: Commerce on the Net. Academic Press, 1996.

18

